Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Int ; 101: 102899, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663799

ABSTRACT

Herein, innovative biocides are designed for the treatment of Trichinella spiralis muscle larvae (ML) and adult worms. Samarium-doped ZnO nanorods (Sm-doped ZnO) are stabilized onto the laminar structure of cuttlefish bone (CB) matrix and adorned by either Ag NPs or cobalt phthalocyanine (CoPc) species. Physicochemical characteristics of such nanocomposites are scrutinised. Adorning of Sm-doped ZnO/CB with Ag NPs shortens rod-like shaped Sm-doped ZnO nanoparticles and accrues them, developing large-sized detached patches over CB moiety. Meanwhile, adorning of Sm-doped ZnO/CB by CoPc species degenerates CB lamellae forming semi-rounded platelets and encourages invading of Sm-doped ZnO nanorods deeply inside gallery spacings of CB. Both nanocomposites possess advanced parasiticidal activity, displaying quite intoxication for ML and adult worms (≥88% mortality) within an incubation period of <48 h at concentrations around 200 µg/ml. CoPc@Sm-doped ZnO/CB nanocomposite exhibits faster killing efficiency of adult worms than that of Ag@Sm-doped ZnO/CB at a concentration of ∼75 µg/ml showing entire destruction of parasite after 24 h incubation with the former nanocomposite and just 60% worm mortality after 36 h exposure to the later one. Morphological studies of the treated ML and adult worms show that CoPc@Sm-doped ZnO/CB exhibits a destructive impact on the parasite body, creating featureless and sloughed fragments enriched with intensive vacuoles. Hybridization of cuttlefish bone lamellae by CoPc species is considered a springboard for fabrication of futuristic aggressive drugs against various food- and water-borne parasites.

2.
Heliyon ; 9(7): e18110, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483817

ABSTRACT

Hierarchically stacked mesoporous zinc-aluminium nanolayered-double-hydroxide intercalated with decavanadate (ZnAl-LDH-V10O28) is constructed using anion-exchange process via microwave-hydrothermal treatment. Physicochemical properties of ZnAl-LDH-V10O28 are characterized in detail. Decavanadate anions are intimately interacted with ZnAl-LDH nanosheets, generating highly ordered architecture of well-dimensioned stacking blocks of brucite-like nanolayers (∼8 nm). Such hierarchy improves surface-porosity and electrical-impedivity of ZnAl-LDH-V10O28 with declining its zeta-potential (ζav = 8.8 mV). In-vitro treatment of various developmental-stages of Trichinella spiralis and Schistosoma mansoni by ZnAl-LDH-V10O28 is recognized using parasitological and morphological (SEM/TEM) analyses. ZnAl-LDH-V10O28 exterminates muscle-larvae and adult-worms of Trichinella spiralis, and juvenile and adult Schistosoma mansoni, yielding near 100% mortality with rates achieving 5%/h within about 17 h of incubation. This parasiticidal behavior results from the symphony of biological activity gathering decavanadate and LDH-nanosheets. Indeed, ZnAl-LDH-V10O28 nanohybrid sample, as a promissory biocide for killing food-borne/waterborne parasites, becomes a futuristic research hotspot for studying its in-vivo bioactivity and impact-effectiveness on parasite molecular biology.

3.
J Trace Elem Med Biol ; 67: 126794, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34052583

ABSTRACT

BACKGROUND: Iron (Fe) is one of the most essential trace elements in the body that play crucial role in organisms' survival, however, excess deposition of it puts patients at higher risk of iron overload and tissue injury through production of reactive oxygen species (ROS), elevation of oxidative stress, development of endocrine disorders among which hypogonadism, and increased incidence of cells damage in vital organs. As deferasirox (DFX) is an approved Fe chelator drug, its inability to cross blood brain barrier (BBB) remains a definite obstacle against its use as Fe chelator in the brain. Lately, attention to nanoparticles usage in researches has been widely grown since their role in improving drug therapeutic effects and scavenging free radicals make them good candidates as chelating and antioxidant agents. AIMS: Herein, after induction of iron overload, organo-modified casein immobilized silver nanocomposite (Ag@Tr-CA) was designed and explored as combined therapy with DFX drug to develop its penetrating efficiency toward BBB and its Fe chelating affinity. Moreover, to distinguish the advanced antioxidant character as well as the beneficial impact of it on lowering brain's oxidative stress. Meanwhile, its capability in regulating serum pituitary hormones such as follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and testosterone (T), ameliorating DNA damage, and improving brain's histopathological alterations was also assessed. METHODS: The physicochemical characteristics of Ag@Tr-CA was carried out using X-ray powder diffractometry (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscope (HR-TEM) analyses. Effect of iron overload and subsequent treatment with DFX + Ag@Tr-CA on brain of adult male albino rats were evaluated using colorimetric methods to determine brain Fe concentration and brain oxidative stress biomarkers. Assessment of serum Fe indices and serum pituitary hormones (FSH, LH, PRL) and T were estimated by ELISA technique. Determination of DNA damage in cerebral cortex cells was accomplished using the alkaline version of comet assay, while detection of brain's histopathological alterations was performed by examination of H&E sections under light microscope. RESULTS: The physicochemical characteristics of Ag@Tr-CA showing the proficiency of Ag nanoparticles (∼35 nm) in creating highly-ordered negatively charged micro-sized casein particles (∼450 µm). After induction of iron overload, DFX + Ag@Tr-CA combination efficiently down brain Fe concentration, brain oxidative stress markers, and DNA damage in cerebral cortex cells linked with improvements in brain histopathological alterations. Comparing DFX therapeutic action alone to its combination to whether Ag@Tr-CA or Tr-CA (organo-modified cross-linked casein nanoparticles) as co-treating agents revealed no significant effect on serum Fe indices, FSH, LH, PRL, and T against iron overload disease. CONCLUSION: The present results showed that combination of Ag@Tr-CA nanocomposite with DFX makes it a promising co-treating agent against iron overload through improving the physiological, molecular, and histological structure of the brain in iron overloaded rats.


Subject(s)
Iron Overload , Metal Nanoparticles , Nanocomposites , Pharmaceutical Preparations , Animals , Antioxidants/pharmacology , Brain , Caseins , Deferasirox , Follicle Stimulating Hormone , Humans , Iron , Iron Chelating Agents/pharmacology , Iron Overload/drug therapy , Male , Rats , Silver/pharmacology
4.
Mater Sci Eng C Mater Biol Appl ; 93: 996-1011, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30274138

ABSTRACT

Herein, eco-friendly composite was synthesized by embedding silver (Ag) nanospheres onto aragonitic cuttlefish bone (CB)-stabilized samarium doped zinc oxide (Sm-doped ZnO) nanorods. The operating interaction profile and the photoactive behavior of this nanocomposite were assessed via XRD, FTIR, Raman, TEM, FE-SEM, DLS, DRS and PL techniques. Locality of Sm-doped ZnO and its attaching modes to the cuttlefish bone lamella were highly dominated by embedding Ag NPs that encouraged Zn2+ Lewis acid sites to electrostatically interact with aragonite carbonates in the channeled porous CB system. Such interacting approach enhanced photoactivity of Sm-doped ZnO by lowering its energy band gap (from 3.26 eV for Sm-doped ZnO/CB to 2.12 eV for Ag@Sm-doped ZnO/CB). Besides, plasmon-induced silver electrons provided Sm-doped ZnO by extra photosensitivity. Ag@Sm-doped ZnO/CB nanocomposite exhibited pronounced photo-activated disinfection efficiencies for Staphylococcus aureus (80%), Pseudomonas aeruginosa (60%), and Schistosoma mansoni cercariae (100%) linked with progressive demolition in cercarial body. Such nanocomposite also possessed exterminating action against Schistosoma mansoni adult worms serving near 100% worm-mortality accompanied by significant disintegration of worm body. These findings were successfully drawn Ag@Sm-doped ZnO/CB as an efficient weapon in the biocides arsenal being even capable of destructing pathogenic bacteria and parasites in dark- and photo- conditions.


Subject(s)
Anti-Bacterial Agents , Disinfectants , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanotubes/chemistry , Pseudomonas aeruginosa/growth & development , Schistosoma mansoni/growth & development , Schistosomicides , Staphylococcus aureus/growth & development , Tin , Zinc Oxide , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chlorocebus aethiops , Disinfectants/chemistry , Disinfectants/pharmacology , Schistosomicides/chemistry , Schistosomicides/pharmacology , Tin/chemistry , Tin/pharmacology , Vero Cells , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
5.
Mater Sci Eng C Mater Biol Appl ; 65: 151-63, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27157738

ABSTRACT

This paper upraises delivery and therapeutic actions of galantamine drug (GAL) against Alzheimer's disease (AD) in rat brain through attaching GAL to ceria-containing hydroxyapatite (GAL@Ce-HAp) as well ceria-containing carboxymethyl chitosan-coated hydroxyapatite (GAL@Ce-HAp/CMC) nanocomposites. Physicochemical features of such nanocomposites were analyzed by XRD, FT-IR, Raman spectroscopy, UV-vis spectrophotometer, N2-BET, DLS, zeta-potential measurements, SEM, and HR-TEM. Limited interactions were observed in GAL@Ce-HAp with prevailed existence of dispersed negatively charged rod-like particles conjugated with ceria nanodots. On contrary, GAL@Ce-HAp/CMC was well-structured developing aggregates of uncharged tetragonal-shaped particles laden with accession of ceria quantum dots. Such nanocomposites were i.p. injected into ovariectomized AD albino-rats at galantamine dose of 2.5mg/kg/day for one month, then brain tissues were collected for biochemical and histological tests. GAL@Ce-HAp adopted as a promising candidate for AD curativeness, whereas oxidative stress markers were successfully upregulated, degenerated neurons in hippocampal and cerebral tissues were wholly recovered and Aß-plaques were vanished. Also, optimizable in-vitro release for GAL and nanoceria were displayed from GAL@Ce-HAp, while delayed in-vitro release for those species were developed from GAL@Ce-HAp/CMC. This proof of concept work allow futuristic omnipotency of rod-like hydroxyapatite particles for selective delivery of GAL and nanoceria to AD affected brain areas.


Subject(s)
Alzheimer Disease/drug therapy , Cerium/chemistry , Durapatite/chemistry , Galantamine/administration & dosage , Nanocomposites/chemistry , Aluminum Chloride , Aluminum Compounds/toxicity , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Brain/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Chitosan/analogs & derivatives , Chitosan/chemistry , Chlorides/toxicity , Disease Models, Animal , Drug Carriers/chemistry , Dynamic Light Scattering , Female , Galantamine/chemistry , Hippocampus/metabolism , Hippocampus/pathology , Ovariectomy , Rats , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
Mater Sci Eng C Mater Biol Appl ; 59: 717-730, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652426

ABSTRACT

This study aims to manipulate an antischistosomal nanocomposite based on exfoliated clay immobilized heteropolyoxotungstate. The nanocomposite's physicochemical characteristics were examined using XRD, Raman spectroscopy, FTIR, DLS, SEM, HR-TEM and AFM. Nano-sized spheroidal negatively charged Keggin-type heteropolyoxotungstate particles were developed along and between the exfoliated clay layers. The impact of the nanocomposite on Schistosoma mansoni-infected mice was studied through parasitological, physiological and histological analyses. Infected mice were orally vaccinated by a single nanocomposite dose (15mg/kg/day) for two weeks. The schistosomicidal activities of the nanocomposite in vitro were investigated by examining its dose- and time-dependent responses in terms of % worm mortality. The time-dependent morphological alterations in schistosomes at a nanocomposite dosage of 15µg/mL were followed by SEM. The nanocomposite exhibited potential schistosomicidal properties with a marked reduction in worm burden (~85% mortality), extensive deformities in the adult worm tegument and suckers, improvement of serum biochemical activities, and diminishment in granulomatous lesions. The in vitro release of heteropolyoxotungstate from exfoliated clay indicates the clay's ability to embrace the heteropolytungstate until its liberation at the parasitic districts.


Subject(s)
Anthelmintics , Kaolin , Nanocomposites/chemistry , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Tungsten Compounds , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Kaolin/chemistry , Kaolin/pharmacology , Mice , Tungsten Compounds/chemistry , Tungsten Compounds/pharmacology
7.
Mater Sci Eng C Mater Biol Appl ; 48: 599-610, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25579963

ABSTRACT

The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5mg/kg/week for 2.5months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid/drug therapy , Cellulose , Drug Carriers , Methotrexate , Saccharum/chemistry , Silica Gel , Animals , Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cellulose/chemistry , Cellulose/pharmacokinetics , Cellulose/pharmacology , Disease Models, Animal , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Knee Joint/metabolism , Knee Joint/pathology , Magnetic Fields , Male , Rats , Silica Gel/chemistry , Silica Gel/pharmacokinetics , Silica Gel/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...